Grasses suppress shoot-borne roots to conserve water during drought.

نویسندگان

  • Jose Sebastian
  • Muh-Ching Yee
  • Willian Goudinho Viana
  • Rubén Rellán-Álvarez
  • Max Feldman
  • Henry D Priest
  • Charlotte Trontin
  • Tak Lee
  • Hui Jiang
  • Ivan Baxter
  • Todd C Mockler
  • Frank Hochholdinger
  • Thomas P Brutnell
  • José R Dinneny
چکیده

Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses

Drought severely limits forage productivity of C4 grasses across the tropics. The avoidance of water deficit by increasing the capacity for water uptake or by controlling water loss are common responses in forage C4 grasses. Napier grass (Pennisetum purpureum) and Brachiaria hybrid cv. Mulato II are tropical C4 grasses used for livestock production due to their reputed resistance to drought con...

متن کامل

ارزیابی مقاومت به خشکی در دو گونه چمن بومی ایران

In recent decade, establish and maintenance of turf grasses is faced with serious doubts due to reduction of precipitation and water resources. So, identification of drought-resistant native and rangeland species, and introducing them as turf grass not only is effective in reducing water consumption, but also help to preserve the genetic resources of the country. In order to evaluate the usabil...

متن کامل

Sex-Related Responses of Populus cathayana Shoots and Roots to AM Fungi and Drought Stress

We investigated the impact of drought and arbuscular mycorrhizal (AM) fungi on the morphological structure and physiological function of shoots and roots of male and female seedlings of the dioecious plant Populus cathayana Rehder. Pot-grown seedlings were subjected to well watered or water-limiting conditions (drought) and were grown in soil that was either inoculated or not inoculated with th...

متن کامل

Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments.

Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brac...

متن کامل

Saltgrass, a potential future landscaping plant and a suitable species for desert regions: A review

Continuous desertification of arable lands mandates use of low quality/ saline water for irrigation, especially in regions experiencing water shortage. Using low quality/ saline water for irrigation imposes more stress on plants that are already under stress in these regions. Thus, a logical solution will be to find a salt/ drought-tolerant plant species that will survive/sustain under such str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 31  شماره 

صفحات  -

تاریخ انتشار 2016